问题描述:
八皇后问题是十九世纪著名数学家高斯于1850年提出的。问题是:在8*8的棋盘上摆放8个皇后,使其不能互相攻击,即任意的两个皇后不能处在同意行,同一列,或同意斜线上。可以把八皇后问题拓展为n皇后问题,即在n*n的棋盘上摆放n个皇后,使其任意两个皇后都不能处于同一行、同一列或同一斜线上。
问题分析 :
显然,每一行可以而且必须放一个皇后,所以n皇后问题的解可以用一个n元向量X=(x1,x2,…..xn)表示,其中,1≤ i≤ n且1≤ xi≤ n,即第n个皇后放在第i行第xi列上。
由于两个皇后不能放在同一列上,所以,解向量X必须满足的约束条件为:
xi≠ xj;
若两个皇后的摆放位置分别是(i,xi)和(j,xj),在棋盘上斜率为-1的斜线上,满足条件i-j=xi-xj;在棋盘上斜率为1的斜线上,满足条件i+j=xi+xj;
综合两种情况,由于两个皇后不能位于同一斜线上,所以,
解向量X必须满足的约束条件为:
|i-xi|≠ |j-xj|;
老师要求用栈来写
#include <iostream.h>
#include <math.h>
#include <windows.h>
#define Max 50
typedef struct
{
int i;
int j;
} Elem;
typedef struct
{
Elem data[Max];
int top;
}SqStack;
//-------------------------------初始化栈
void InitStack(SqStack *&s)
{
s = (SqStack*)malloc(sizeof(SqStack));
s->top=-1;
}
//-----------------------------销毁栈
void DestroyStack(SqStack*&s)
{
free(s);
}
//--------------------------------判断栈是否为空
bool StackEmpty(SqStack*s)
{
return (s->top==-1);
}
//--------------------------------进栈
bool Push(SqStack*&s,Elem e)
{
if(s->top==Max-1)
{
return false;
}
s->top++;
s->data[s->top] = e;
return true;
}
//---------------------------------出栈
bool Pop(SqStack*&s , Elem &e)
{
if(s->top==-1)
return false;
e = s->data[s->top];
s->top--;
return true;
}
//-----------------------------------取栈顶元素
bool GetTop(SqStack*s,Elem &e)
{
if(s->top==-1)
return false;
e = s->data[s->top];
return true;
}
bool Pan(SqStack *st,int i,int j)//考察皇后的位置是否冲突
{
int y,sum;
sum =0;
if(st->top==0)
{
return true;
}
for(y=0;y<=st->top;y++)
{
if(st->data[y].j==j||abs(i - st->data[y].i)==abs(j - st->data[y].j))
{
break;
}
sum++;
}
if(sum==i-1)
{
return true;
}
return false;
}
int HuangHuo(int n)
{
SqStack *st;
InitStack(st);
int x,y,z,t;
Elem e;
e.i = 1;
e.j = 1;
int num = 0;
t = 0;
Push(st,e);
while(1)
{
GetTop(st,e);
int i = e.i;
int j = e.j;
if(i==1&&j>n)//当没有位置可以搜索时,退出
break;
if(e.j>n)
{
Pop(st,e);
Pop(st,e);
e.j++;
Push(st,e);
continue;
}
if(i==n+1&&t)//当栈顶的是最后一行时,输出
{
num++;
printf("结果为:");
for(x=0;x<st->top;x++)
{
printf("(%d,%d)\t",st->data[x].i,st->data[x].j);
}
printf("\n\n");
//Pop(st,e);
Pop(st,e);
e.j++;
Push(st,e);
t = 0;
continue;
}
t=0;
if(Pan(st,i,j))//判断当前位置是否可以放置,break
{
t = 1;
// printf("栈顶元素可以放置:(%d,%d)\n\n",i,j);
e.i = i+1;
e.j = 1;
Push(st,e);
// printf("栈顶元素改变:(%d,%d)\n\n",e.i,e.j);
//continue;
}
if(!t)//如果不能放置
{
//将j位置后移再进栈
e.j++;
Elem e1;
Pop(st,e1);
// printf("当前位置不可放置:(%d,%d)\n\n",e1.i,e1.j);
Push(st,e);
// printf("退栈后进栈的位置:(%d,%d)\n\n",e.i,e.j);
}
}
return num;
}
int main()
{
int n;
printf("请输入皇后的个数:\n");
scanf("%d",&n);
int num = HuangHuo(n);
printf("共有%d放置方法\n",num);
return 0;
}
不用栈结构的代码
#include<stdio.h>
#include<math.h>
int x[100];
bool place(int k)//考察皇后k放置在x[k]列是否发生冲突
{
int i;
for(i=1;i<k;i++)
if(x[k]==x[i]||abs(k-i)==abs(x[k]-x[i]))
return false;
return true;
}
void queue(int n)
{
int i,k;
for(i=1;i<=n;i++)
x[i]=0;
k=1;
while(k>=1)
{
x[k]=x[k]+1; //在下一列放置第k个皇后
while(x[k]<=n&&!place(k))
x[k]=x[k]+1;//搜索下一列
if(x[k]<=n&&k==n)//得到一个输出
{
for(i=1;i<=n;i++)
printf("%d ",x[i]);
printf("\n");
//return;//若return则只求出其中一种解,若不return则可以继续回溯,求出全部的可能的解
}
else if(x[k]<=n&&k<n)
k=k+1;//放置下一个皇后
else
{
x[k]=0;//重置x[k],回溯
k=k-1;
}
}
}
void main()
{
int n;
printf("输入皇后个数n:\n");
scanf("%d",&n);
queue(n);
}